From the about page:

The FrameNet project is building a lexical database of English that is both human- and machine-readable, based on annotating examples of how words are used in actual texts. From the student’s point of view, it is a dictionary of more than 10,000 word senses, most of them with annotated examples that show the meaning and usage. For the researcher in Natural Language Processing, the more than 170,000 manually annotated sentences provide a unique training dataset for semantic role labeling, used in applications such as information extraction, machine translation, event recognition, sentiment analysis, etc. For students and teachers of linguistics it serves as a valence dictionary, with uniquely detailed evidence for the combinatorial properties of a core set of the English vocabulary. The project has been in operation at the International Computer Science Institute in Berkeley since 1997, supported primarily by the National Science Foundation, and the data is freely available for download; it has been downloaded and used by researchers around the world for a wide variety of purposes (See FrameNet users).

FrameNet is based on a theory of meaning called Frame Semantics, deriving from the work of Charles J. Fillmore and colleagues (Fillmore 1976, 1977, 1982, 1985, Fillmore and Baker 2001, 2010). The basic idea is straightforward: that the meanings of most words can best be understood on the basis of a semantic frame: a description of a type of event, relation, or entity and the participants in it. For example, the concept of cooking typically involves a person doing the cooking (Cook), the food that is to be cooked (Food), something to hold the food while cooking (Container) and a source of heat (Heating_instrument). In the FrameNet project, this is represented as a frame called Apply_heat, and the Cook, Food, Heating_instrument and Container are called frame elements (FEs) . Words that evoke this frame, such as fry, bake, boil, and broil, are called lexical units (LUs) of the Apply_heat frame. Other frames are more complex, such as Revenge, which involves more FEs (Offender, Injury, Injured_Party, Avenger, and Punishment) and others are simpler, such as Placing, with only an Agent (or Cause), a thing that is placed (called a Theme) and the location in which it is placed (Goal). The job of FrameNet is to define the frames and to annotate sentences to show how the FEs fit syntactically around the word that evokes the frame, as in the following examples of Apply_heat and Revenge:

At least for English based topic maps, possibly a rich source for roles in association and even templates for associations.

To say nothing of using associations (frames) as scopes.

Recalling that the frames themselves do not stand outside of semantics but have semantics of their own.

Suggestions of similar resources in other languages?

Comments are closed.