## Archive for the ‘Operations Research’ Category

### Sudoku, Linear Optimization, and the Ten Cent Diet

Tuesday, September 30th, 2014

Sudoku, Linear Optimization, and the Ten Cent Diet by Joh Orwant.

From the post:

In 1945, future Nobel laureate George Stigler wrote an essay in the Journal of Farm Economics titled The Cost of Subsistence about a seemingly simple problem: how could a soldier be fed for as little money as possible?

The “Stigler Diet” became a classic problem in the then-new field of linear optimization, which is used today in many areas of science and engineering. Any time you have a set of linear constraints such as “at least 50 square meters of solar panels” or “the amount of paint should equal the amount of primer” along with a linear goal (e.g., “minimize cost” or “maximize customers served”), that’s a linear optimization problem.

At Google, our engineers work on plenty of optimization problems. One example is our YouTube video stabilization system, which uses linear optimization to eliminate the shakiness of handheld cameras. A more lighthearted example is in the Google Docs Sudoku add-on, which instantaneously generates and solves Sudoku puzzles inside a Google Sheet, using the SCIP mixed integer programming solver to compute the solution.

(image omitted)

Today we’re proud to announce two new ways for everyone to solve linear optimization problems. First, you can now solve linear optimization problems in Google Sheets with the Linear Optimization add-on written by Google Software Engineer Mihai Amarandei-Stavila. The add-on uses Google Apps Script to send optimization problems to Google servers. The solutions are displayed inside the spreadsheet. For developers who want to create their own applications on top of Google Apps, we also provide an API to let you call our linear solver directly.

(image omitted)

Second, we’re open-sourcing the linear solver underlying the add-on: Glop (the Google Linear Optimization Package), created by Bruno de Backer with other members of the Google Optimization team. It’s available as part of the or-tools suite and we provide a few examples to get you started. On that page, you’ll find the Glop solution to the Stigler diet problem. (A Google Sheets file that uses Glop and the Linear Optimization add-on to solve the Stigler diet problem is available here. You’ll need to install the add-on first.)

For a fuller introduction to linear programming: Practical Optimization: A Gentle Introduction by John W. Chinneck. Online, draft chapters.

I would say more about the utility of linear optimization in the subject identity space but it might violate an NDA I signed many years ago. Sorry.

### Distributed Dual Decomposition (DDD) in GraphLab

Thursday, April 18th, 2013

Distributed Dual Decomposition (DDD) in GraphLab by Danny Bickson.

From the post:

Our collaborator Dhruv Batra, from Virginia Tech has kindly contributed DDD code for GraphLab. Here are some explanation about the method and how to deploy it.

The full documentation is found here.

Distributed Dual Decomposition

Dual Decomposition (DD), also called Lagrangian Relaxation, is a powerful technique with a rich history in Operations Research. DD solves a relaxation of difficult optimization problems by decomposing them into simpler subproblems, solving these simpler subproblems independently and then combining these solutions into an approximate global solution.

More details about DD for solving Maximum A Posteriori (MAP) inference problems in Markov Random Fields (MRFs) can be found in the following:

D. Sontag, A. Globerson, T. Jaakkola. Introduction to Dual Decomposition for Inference. Optimization for Machine Learning, editors S. Sra, S. Nowozin, and S. J. Wright: MIT Press, 2011.

Always bear in mind that string matching is only one form of subject identification.

### pumpkin patches and queuing theory

Wednesday, October 12th, 2011

pumpkin patches and queuing theory

From the post:

This weekend, my family and I went to a pumpkin patch. Everyone else had the same idea. The line stretched out of the pumpkin patch gates and through the parking lot. We waited in line for ten minutes and then balked. When we left, about 90% of those that were leaving did not have pumpkins. We arrived in the morning on Sunday. It was only going to get busier. I cannot imagine the amount of revenue that was lost. We found out later that it took nearly two hours to get through the line.

During our short wait and on our drive to another orchard, we discussed queuing and pumpkin patches.

With a lead-in like that, how could I resist pointing to it? (Besides, I am a Charlie Brown fan.)

A little operations research discussion won’t hurt you and might be useful in terms of dealing with organizations that like that sort of thing. The US DoD, etc. Might even provide some insight into how they assign/create subject identity.