… a website and repository for accessing, analysing and manipulating metabolic networks by Mathias Ganter, Thomas Bernard, Sébastien Moretti, Joerg Stelling and Marco Pagni. (Bioinformatics (2013) 29 (6): 815-816. doi: 10.1093/bioinformatics/btt036)

Abstract: is a website for accessing, analysing and manipulating genome-scale metabolic networks (GSMs) as well as biochemical pathways. It consistently integrates data from various public resources and makes the data accessible in a standardized format using a common namespace. Currently, it provides access to hundreds of GSMs and pathways that can be interactively compared (two or more), analysed (e.g. detection of dead-end metabolites and reactions, flux balance analysis or simulation of reaction and gene knockouts), manipulated and exported. Users can also upload their own metabolic models, choose to automatically map them into the common namespace and subsequently make use of the website’s functionality.

The authors are addressing a familiar problem:

Genome-scale metabolic networks (GSMs) consist of compartmentalized reactions that consistently combine biochemical, genetic and genomic information. When also considering a biomass reaction and both uptake and secretion reactions, GSMs are often used to study genotype–phenotype relationships, to direct new discoveries and to identify targets in metabolic engineering (Karr et al., 2012). However, a major difficulty in GSM comparisons and reconstructions is to integrate data from different resources with different nomenclatures and conventions for both metabolites and reactions. Hence, GSM consolidation and comparison may be impossible without detailed biological knowledge and programming skills. (emphasis added)

For which they propose an uncommon solution: is implemented as a user-friendly and self-explanatory website that handles all user requests dynamically (Fig. 1a). It allows a user to access a collection of hundreds of published models, browse and select subsets for comparison and analysis, upload or modify new models and export models in conjunction with their results. Its functionality is based on a common namespace defined by MNXref (Bernard et al., 2012). In particular, all repository or user uploaded models are automatically translated with or without compartments into the common namespace; small deviations from the original model are possible due to the automatic reconciliation steps implemented by Bernard et al. (2012). However, a user can choose not to translate his model but still make use of the website’s functionalities. Furthermore, it is possible to augment the given reaction set by user-defined reactions, for example, for model augmentation.

The bioinformatics community recognizes the intellectual poverty of lock step models.

Wonder when the intelligence community is going to have that “a ha” moment?

Comments are closed.