Another Word For It Patrick Durusau on Topic Maps and Semantic Diversity

August 5, 2012

Machine Learning — Introduction

Filed under: Machine Learning — Patrick Durusau @ 4:28 am

Machine Learning — Introduction by Jeremy Kun.

These days an absolutely staggering amount of research and development work goes into the very coarsely defined field of “machine learning.” Part of the reason why it’s so coarsely defined is because it borrows techniques from so many different fields. Many problems in machine learning can be phrased in different but equivalent ways. While they are often purely optimization problems, such techniques can be expressed in terms of statistical inference, have biological interpretations, or have a distinctly geometric and topological flavor. As a result, machine learning has come to be understood as a toolbox of techniques as opposed to a unified theory.

It is unsurprising, then, that such a multitude of mathematics supports this diversified discipline. Practitioners (that is, algorithm designers) rely on statistical inference, linear algebra, convex optimization, and dabble in graph theory, functional analysis, and topology. Of course, above all else machine learning focuses on algorithms and data.

The general pattern, which we’ll see over and over again as we derive and implement various techniques, is to develop an algorithm or mathematical model, test it on datasets, and refine the model based on specific domain knowledge. The first step usually involves a leap of faith based on some mathematical intuition. The second step commonly involves a handful of established and well understood datasets (often taken from the University of California at Irvine’s machine learning database, and there is some controversy over how ubiquitous this practice is). The third step often seems to require some voodoo magic to tweak the algorithm and the dataset to complement one another.

It is this author’s personal belief that the most important part of machine learning is the mathematical foundation, followed closely by efficiency in implementation details. The thesis is that natural data has inherent structure, and that the goal of machine learning is to represent this and utilize it. To make true progress, one must represent and analyze structure abstractly. And so this blog will focus predominantly on mathematical underpinnings of the algorithms and the mathematical structure of data.

Jeremy is starting a series of posts on machine learning that should prove to be useful.

While I would disagree about “inherent structure[s]” in data, we do treat data as though that were the case. Careful attention to those structures, inherent or not, is the watchword of useful analysis.

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.

Powered by WordPress