Another Word For It Patrick Durusau on Topic Maps and Semantic Diversity

November 19, 2016

How to get superior text processing in Python with Pynini

Filed under: FSTs,Journalism,News,Python,Reporting,Text Mining — Patrick Durusau @ 9:35 pm

How to get superior text processing in Python with Pynini by Kyle Gorman and Richard Sproat.

From the post:

It’s hard to beat regular expressions for basic string processing. But for many problems, including some deceptively simple ones, we can get better performance with finite-state transducers (or FSTs). FSTs are simply state machines which, as the name suggests, have a finite number of states. But before we talk about all the things you can do with FSTs, from fast text annotation—with none of the catastrophic worst-case behavior of regular expressions—to simple natural language generation, or even speech recognition, let’s explore what a state machine is, what they have to do with regular expressions.

Reporters, researchers and others will face a 2017 where the rate of information has increased, along with noise from media spasms over the latest taut from president-elect Trump.

Robust text mining/filtering will your daily necessities, if they aren’t already.

Tagging text is the first example. Think about auto-generating graphs from emails with “to:,” “from:,” “date:,” and key terms in the email. Tagging the key terms is essential to that process.

Once tagged, you can slice and dice the text as more information is uncovered.

Interested?

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.

Powered by WordPress