Mining a multilingual association dictionary from Wikipedia for cross-language information retrieval by Zheng Ye, Jimmy Xiangji Huang, Ben He, Hongfei Lin.
Abstract:
Wikipedia is characterized by its dense link structure and a large number of articles in different languages, which make it a notable Web corpus for knowledge extraction and mining, in particular for mining the multilingual associations. In this paper, motivated by a psychological theory of word meaning, we propose a graph-based approach to constructing a cross-language association dictionary (CLAD) from Wikipedia, which can be used in a variety of cross-language accessing and processing applications. In order to evaluate the quality of the mined CLAD, and to demonstrate how the mined CLAD can be used in practice, we explore two different applications of the mined CLAD to cross-language information retrieval (CLIR). First, we use the mined CLAD to conduct cross-language query expansion; and, second, we use it to filter out translation candidates with low translation probabilities. Experimental results on a variety of standard CLIR test collections show that the CLIR retrieval performance can be substantially improved with the above two applications of CLAD, which indicates that the mined CLAD is of sound quality.
Is there a lesson here about using Wikipedia as a starter set of topics across languages?
Not the final product but a starting place other than ground zero for creation of a multi-lingual topic map.