Dynamic faceting with Lucene by Michael McCandless.
From the post:
Lucene’s facet module has seen some great improvements recently: sizable (nearly 4X) speedups and new features like DrillSideways. The Jira issues search example showcases a number of facet features. Here I’ll describe two recently committed facet features: sorted-set doc-values faceting, already available in 4.3, and dynamic range faceting, coming in the next (4.4) release.
To understand these features, and why they are important, we first need a little background. Lucene’s facet module does most of its work at indexing time: for each indexed document, it examines every facet label, each of which may be hierarchical, and maps each unique label in the hierarchy to an integer id, and then encodes all ids into a binary doc values field. A separate taxonomy index stores this mapping, and ensures that, even across segments, the same label gets the same id.
At search time, faceting cost is minimal: for each matched document, we visit all integer ids and aggregate counts in an array, summarizing the results in the end, for example as top N facet labels by count.
This is in contrast to purely dynamic faceting implementations like ElasticSearch‘s and Solr‘s, which do all work at search time. Such approaches are more flexible: you need not do anything special during indexing, and for every query you can pick and choose exactly which facets to compute.
However, the price for that flexibility is slower searching, as each search must do more work for every matched document. Furthermore, the impact on near-real-time reopen latency can be horribly costly if top-level data-structures, such as Solr’s
UnInvertedField
, must be rebuilt on every reopen. The taxonomy index used by the facet module means no extra work needs to be done on each near-real-time reopen.
The dynamic range faceting sounds particularly useful.