Another Word For It Patrick Durusau on Topic Maps and Semantic Diversity

February 8, 2016

Fast search of thousands of short-read sequencing experiments [NEW! Sequence Bloom Tree]

Filed under: Bioinformatics,Genomics — Patrick Durusau @ 8:02 pm

Fast search of thousands of short-read sequencing experiments by Brad Solomon & Carl Kingsford.

Abstract from the “official” version at Nature Biotechnology (2016):

The amount of sequence information in public repositories is growing at a rapid rate. Although these data are likely to contain clinically important information that has not yet been uncovered, our ability to effectively mine these repositories is limited. Here we introduce Sequence Bloom Trees (SBTs), a method for querying thousands of short-read sequencing experiments by sequence, 162 times faster than existing approaches. The approach searches large data archives for all experiments that involve a given sequence. We use SBTs to search 2,652 human blood, breast and brain RNA-seq experiments for all 214,293 known transcripts in under 4 days using less than 239 MB of RAM and a single CPU. Searching sequence archives at this scale and in this time frame is currently not possible using existing tools.

That will set you back $32 for the full text and PDF.

Or, you can try the unofficial version:

Abstract:

Enormous databases of short-read RNA-seq sequencing experiments such as the NIH Sequence Read Archive (SRA) are now available. However, these collections remain difficult to use due to the inability to search for a particular expressed sequence. A natural question is which of these experiments contain sequences that indicate the expression of a particular sequence such as a gene isoform, lncRNA, or uORF. However, at present this is a computationally demanding question at the scale of these databases.

We introduce an indexing scheme, the Sequence Bloom Tree (SBT), to support sequence-based querying of terabase-scale collections of thousands of short-read sequencing experiments. We apply SBT to the problem of finding conditions under which query transcripts are expressed. Our experiments are conducted on a set of 2652 publicly available RNA-seq experiments contained in the NIH for the breast, blood, and brain tissues, comprising 5 terabytes of sequence. SBTs of this size can be queried for a 1000 nt sequence in 19 minutes using less than 300 MB of RAM, over 100 times faster than standard usage of SRA-BLAST and 119 times faster than STAR. SBTs allow for fast identification of experiments with expressed novel isoforms, even if these isoforms were unknown at the time the SBT was built. We also provide some theoretical guidance about appropriate parameter selection in SBT and propose a sampling-based scheme for potentially scaling SBT to even larger collections of files. While SBT can handle any set of reads, we demonstrate the effectiveness of SBT by searching a large collection of blood, brain, and breast RNA-seq files for all 214,293 known human transcripts to identify tissue-specific transcripts.

The implementation used in the experiments below is in C++ and is available as open source at http://www.cs.cmu.edu/∼ckingsf/software/bloomtree.

You will probably be interested in review comments by C. Titus Brown, Thoughts on Sequence Bloom Trees.

As of today, the exact string “Sequence Bloom Tree” gathers only 207 “hits” so the literature is still small enough to be read.

Don’t delay overlong pursuing this new search technique!

I first saw this in a tweet by Stephen Turner.

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.

Powered by WordPress