Hopping on the Deep Learning Bandwagon by Yanir Seroussi.
From the post:
I’ve been meaning to get into deep learning for the last few years. Now, the stars having finally aligned and I have the time and motivation to work on a small project that will hopefully improve my understanding of the field. This is the first in a series of posts that will document my progress on this project.
As mentioned in a previous post on getting started as a data scientist, I believe that the best way of becoming proficient at solving data science problems is by getting your hands dirty. Despite being familiar with high-level terminology and having some understanding of how it all works, I don’t have any practical experience applying deep learning. The purpose of this project is to fix this experience gap by working on a real problem.
The problem: Inferring genre from album covers
Deep learning has been very successful at image classification. Therefore, it makes sense to work on an image classification problem for this project. Rather than using an existing dataset, I decided to make things a bit more interesting by building my own dataset. Over the last year, I’ve been running BCRecommender – a recommendation system for Bandcamp music. I’ve noticed that album covers vary by genre, though it’s hard to quantify exactly how they vary. So the question I’ll be trying to answer with this project is how accurately can genre be inferred from Bandcamp album covers?
As the goal of this project is to learn about deep learning rather than make a novel contribution, I didn’t do a comprehensive search to see whether this problem has been addressed before. However, I did find a recent post by Alexandre Passant that describes his use of Clarifai’s API to tag the content of Spotify album covers (identifying elements such as men, night, dark, etc.), and then using these tags to infer the album’s genre. Another related project is Karayev et al.’s Recognizing image style paper, in which the authors classified datasets of images from Flickr and Wikipedia by style and art genre, respectively. In all these cases, the results are pretty good, supporting my intuition that the genre inference task is feasible.
…
Yanir continues this adventure into deep learning with: Learning About Deep Learning Through Album Cover Classification. And you will want to look over his list of Deep Learning Resources.
Yanir’s observation that the goal of the project was “…to learn about deep learning rather than make a novel contribution…” is an important one.
The techniques and lessons you learn may be known to others but they will be new to you.