Getting started with open source machine learning by Grant Ingersoll.
From the post:
Despite all the flashy headlines from Musk and Hawking on the impending doom to be visited on us mere mortals by killer robots from the skies, machine learning and artificial intelligence are here to stay. More importantly, machine learning (ML) is quickly becoming a critical skill for developers to enhance their applications and their careers, better understand data, and to help users be more effective.
What is machine learning? It is the use of both historical and current data to make predictions, organize content, and learn patterns about data without being explicitly programmed to do so. This is typically done using statistical techniques that look for significant events like co-occurrences and anomalies in the data and then factoring in their likelihood into a model that is queried at a later time to provide a prediction for some new piece of data.
Common machine learning tasks include classification (applying labels to items), clustering (grouping items automatically), and topic detection. It is also commonly used in natural language processing. Machine learning is increasingly being used in a wide variety of use cases, including content recommendation, fraud detection, image analysis and ecommerce. It is useful across many industries and most popular programming languages have at least one open source library implementing common ML techniques.
Reflecting the broader push in software towards open source, there are now many vibrant machine learning projects available to experiment with as well as a plethora of books, articles, tutorials, and videos to get you up to speed. Let’s look at a few projects leading the way in open source machine learning and a few primers on related ML terminology and techniques.
…
Grant rounds up a starting list of primers and projects if you need an introduction to machine learning.
Enjoy!