Another Word For It Patrick Durusau on Topic Maps and Semantic Diversity

January 28, 2014

SparkR

Filed under: Parallel Programming,R,Spark,Statistics — Patrick Durusau @ 5:36 pm

Large scale data analysis made easier with SparkR by Shivaram Venkataraman.

From the post:

R is a widely used statistical programming language and supports a variety of data analysis tasks through extension packages. In fact, a recent survey of data scientists showed that R is the most frequently used tool other than SQL databases. However, data analysis in R is limited as the runtime is single threaded and can only process data sets that fit in a single machine.

In an effort to enable large scale data analysis from R, we have recently released SparkR. SparkR is an R package that provides a light-weight frontend to use Spark from R. SparkR allows users to create and transform RDDs in R and interactively run jobs from the R shell on a Spark cluster. You can can try out SparkR today by installing it from our github repo.

Be mindful of the closing caveat:

Right now, SparkR works well for algorithms like gradient descent that are parallelizable but requires users to decide which parts of the algorithm can be run in parallel. In the future, we hope to provide direct access to large scale machine learning algorithms by integrating with Spark’s MLLib. More examples and details about SparkR can be found at http://amplab-extras.github.io/SparkR-pkg.

Early days for SparkR but it has a lot of promise.

I first saw this in a tweet by Jason Trost.

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.

Powered by WordPress