How a New Type of Astronomy Investigates the Most Mysterious Objects in the Universe by Sarah Scoles.
From the post:
In 2007, astronomer Duncan Lorimer was searching for pulsars in nine-year-old data when he found something he didn’t expect and couldn’t explain: a burst of radio waves appearing to come from outside our galaxy, lasting just 5 milliseconds but possessing as much energy as the sun releases in 30 days.
Pulsars, Lorimer’s original objects of affection, are strange enough. They’re as big as cities and as dense as an atom’s nucleus, and each time they spin around (which can be hundreds of times per second), they send a lighthouse-like beam of radio waves in our direction. But the single burst that Lorimer found was even weirder, and for years astronomers couldn’t even decide whether they thought it was real.
Tick, Tock
The burst belongs to a class of phenomena known as “fast radio transients” – objects and events that emit radio waves on ultra-short timescales. They could include stars’ flares, collisions between black holes, lightning on other planets, and RRATs – Rotating RAdio Transients, pulsars that only fire up when they feel like it. More speculatively, some scientists believe extraterrestrial civilizations could be flashing fast radio beacons into space.
Astronomers’ interest in fast radio transients is just beginning, as computers chop data into ever tinier pockets of time. Scientists call this kind of analysis “time domain astronomy.” Rather than focusing just on what wavelengths of light an object emits or how bright it is, time domain astronomy investigates how those properties change as the seconds, or milliseconds, tick by.
In non-time-domain astronomy, astronomers essentially leave the telescope’s shutter open for a while, as you would if you were using a camera at night. With such a long exposure, even if a radio burst is strong, it could easily disappear into the background. But with quick sampling – in essence, snapping picture after picture, like a space stop-motion film – it’s easier to see things that flash on and then disappear.
“The awareness of these short signals has long existed,” said Andrew Siemion, who searches the time domain for signs of extraterrestrial intelligence. “But it’s only the past decade or so that we’ve had the computational capacity to look for them.”
Gathering serious data for radio astronomy remains the task of professionals but the reference to mining old data and discovering transients caught my eye.
Among other places to look for more information: National Radio Astronomy Observatory (NRAO).
Or consider Detecting radioastronomical “Fast Radio Transient Events” via an OODTbased metadata processing by Chris Mattmann, et. al. at ApacheCon 2013.
Understandably, professional interest is in real time processing of their data streams but that doesn’t mean treasures aren’t still lurking in historical data.