Another Word For It Patrick Durusau on Topic Maps and Semantic Diversity

November 13, 2013

PowerLyra

Filed under: GraphLab,Graphs,Networks — Patrick Durusau @ 8:36 pm

PowerLyra by Danny Bickson.

Danny has posted an email from Rong Chen, Shanghai Jiao Tong University, which reads in part:

We argued that skewed distribution in natural graphs also calls for differentiated processing of high-degree and low-degree vertices. We then developed PowerLyra, a new graph analytics engine that embraces the best of both worlds of existing frameworks, by dynamically applying different computation and partition strategies for different vertices. PowerLyra uses Pregel/GraphLab like computation models for process low-degree vertices to minimize computation, communication and synchronization overhead, and uses PowerGraph-like computation model for process high-degree vertices to reduce load imbalance and contention. To seamless support all PowerLyra application, PowerLyra further introduces an adaptive unidirectional graph communication.

PowerLyra additionally proposes a new hybrid graph cut algorithm that embraces the best of both worlds in edge-cut and vertex-cut, which adopts edge-cut for low-degree vertices and vertex-cut for high-degree vertices. Theoretical analysis shows that the expected replication factor of random hybrid-cut is always better than both random vertex-cut and edge-cut. For skewed power-law graph, empirical validation shows that random hybrid-cut also decreases the replication factor of current default heuristic vertex-cut (Grid) from 5.76X to 3.59X and from 18.54X to 6.76X for constant 2.2 and 1.8 of synthetic graph respectively. We also develop a new distributed greedy heuristic hybrid-cut algorithm, namely Ginger, inspired by Fennel (a greedy streaming edge-cut algorithm for a single machine). Compared to Gird vertex-cut, Ginger can reduce the replication factor by up to 2.92X (from 2.03X) and 3.11X (from 1.26X) for synthetic and real-world graphs accordingly.

Finally, PowerLyra adopts locality-conscious data layout optimization in graph ingress phase to mitigate poor locality during vertex communication. we argue that a small increase of graph ingress time (less than 10% for power-law graph and 5% for real-world graph) is more worthwhile for an often larger speedup in execution time (usually more than 10% speedup, specially 21% for Twitter follow graph).

Right now, PowerLyra is implemented as an execution engine and graph partitions of GraphLab, and can seamlessly support all GraphLab applications. A detail evaluation on 48-node cluster using three different graph algorithms (PageRank, Approximate Diameter and Connected Components) show that PowerLyra outperforms current synchronous engine with Grid partition of PowerGraph (Jul. 8, 2013. commit:fc3d6c6) by up to 5.53X (from 1.97X) and 3.26X (from 1.49X) for real-world (Twitter, UK-2005, Wiki, LiveJournal and WebGoogle) and synthetic (10-million vertex power-law graph ranging from 1.8 to 2.2) graphs accordingly, due to significantly reduced replication factor, less communication cost and improved load balance.

The website of PowerLyra: http://ipads.se.sjtu.edu.cn/projects/powerlyra.html
….

Pass this along if you are interested in cutting edge graph software development.

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.

Powered by WordPress