Another Word For It Patrick Durusau on Topic Maps and Semantic Diversity

October 24, 2013

Hypergraphs and Cellular Networks

Filed under: Bioinformatics,Graphs,Hypergraphs — Patrick Durusau @ 7:00 pm

Hypergraphs and Cellular Networks by Steffen Klamt, Utz-Uwe Haus, Fabian Theis. (Klamt S, Haus U-U, Theis F (2009) Hypergraphs and Cellular Networks. PLoS Comput Biol 5(5): e1000385. doi:10.1371/journal.pcbi.1000385)

Background:

The understanding of biological networks is a fundamental issue in computational biology. When analyzing topological properties of networks, one often tends to substitute the term “network” for “graph”, or uses both terms interchangeably. From a mathematical perspective, this is often not fully correct, because many functional relationships in biological networks are more complicated than what can be represented in graphs.

In general, graphs are combinatorial models for representing relationships (edges) between certain objects (nodes). In biology, the nodes typically describe proteins, metabolites, genes, or other biological entities, whereas the edges represent functional relationships or interactions between the nodes such as “binds to”, “catalyzes”, or “is converted to”. A key property of graphs is that every edge connects two nodes. Many biological processes, however, are characterized by more than two participating partners and are thus not bilateral. A metabolic reaction such as A+B→C+D (involving four species), or a protein complex consisting of more than two proteins, are typical examples. Hence, such multilateral relationships are not compatible with graph edges. As illustrated below, transformation to a graph representation is usually possible but may imply a loss of information that can lead to wrong interpretations afterward.

Hypergraphs offer a framework that helps to overcome such conceptual limitations. As the name indicates, hypergraphs generalize graphs by allowing edges to connect more than two nodes, which may facilitate a more precise representation of biological knowledge. Surprisingly, although hypergraphs occur ubiquitously when dealing with cellular networks, their notion is known to a much lesser extent than that of graphs, and sometimes they are used without explicit mention.

This contribution does by no means question the importance and wide applicability of graph theory for modeling biological processes. A multitude of studies proves that meaningful biological properties can be extracted from graph models (for a review see [1]). Instead, this contribution aims to increase the communities’ awareness of hypergraphs as a modeling framework for network analysis in cell biology. We will give an introduction to the notion of hypergraphs, thereby highlighting their differences from graphs and discussing examples of using hypergraph theory in biological network analysis. For this Perspective, we propose using hypergraph statistics of biological networks, where graph analysis is predominantly used but where a hypergraph interpretation may produce novel results, e.g., in the context of a protein complex hypergraph.

Like graphs, hypergraphs may be classified by distinguishing between undirected and directed hypergraphs, and, accordingly, we divide the introduction to hypergraphs given below into two major parts.

When I read:

Many biological processes, however, are characterized by more than two participating partners and are thus not bilateral.

I am reminded of Steve Newcomb’s multilateral models of subject identity.

Possibly overkill for some subject identity use cases and just right for other subject identity use cases. A matter of requirements.

This is a very good introduction to hypergraphs that concludes with forty-four (44) references to literature you may find useful.

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.

Powered by WordPress