Another Word For It Patrick Durusau on Topic Maps and Semantic Diversity

September 13, 2013

Hypergraph-Based Image Retrieval for Graph-Based Representation

Filed under: Graphs,Hypergraphs,Image Processing — Patrick Durusau @ 4:26 pm

Hypergraph-Based Image Retrieval for Graph-Based Representation by Salim Jouili and Salvatore Tabbone.

Abstract:

In this paper, we introduce a novel method for graph indexing. We propose a hypergraph-based model for graph data sets by allowing cluster overlapping. More precisely, in this representation one graph can be assigned to more than one cluster. Using the concept of the graph median and a given threshold, the proposed algorithm detects automatically the number of classes in the graph database. We consider clusters as hyperedges in our hypergraph model and we index the graph set by the hyperedge centroids. This model is interesting to traverse the data set and efficient to retrieve graphs.

(Salim Jouili and Salvatore Tabbone, Hypergraph-based image retrieval for graph-based representation. Journal of the Pattern Recognition Society, April 2012. © 2012 Elsevier Ltd.)

From the introduction:

In the present work, we address the problematic of graph indexing using directly the graph domain. We provide a new approach based on the hypergraph model. The main idea of this contribution is first to re-organize the graph space (domain) into a hypergraph structure. In this hypergraph, each vertex is a graph and each hyperedge corresponds to a set of similar graphs. Second, our method uses this hypergraph structure to index the graph set by making use of the centroids of the hyperedges as index entries. By this way, our method does not need to store additional information about the graph set. In fact, our method creates an index that contains only pointers to some selected graphs from the dataset which is an interesting feature, especially, in the case of large datasets. Besides indexing, our method addresses also the navigation problem in a database of images represented by graphs. Thanks to the hypergraph structure, the navigation through the data set can be performed by a classical traversal algorithm. The experimental results show that our method provides good performance in term of indexing for tested image databases as well as for a chemical database containing about 35,000 graphs, which points out that the proposed method is scalable and can be applied in different domains to retrieve graphs including clustering, indexing and navigation steps.

Sounds very exciting until I think about the difficulty of constructing a generalized “semantic centroid.”

For example, what is the semantic distance between black and white?

Was disambiguation of black and white a useful thing. Yes/No?

Suggestions on how to develop domain specific “semantic centroids?”

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.

Powered by WordPress