Improving options for unlocking your graph data by Ben Lorica.
From the post:
The popular open source project GraphLab received a major boost early this week when a new company comprised of its founding developers, raised funding to develop analytic tools for graph data sets. GraphLab Inc. will continue to use the open source GraphLab to “push the limits of graph computation and develop new ideas”, but having a commercial company will accelerate development, and allow the hiring of resources dedicated to improving usability and documentation.
While social media placed graph data on the radar of many companies, similar data sets can be found in many domains including the life and health sciences, security, and financial services. Graph data is different enough that it necessitates special tools and techniques. Because tools were a bit too complex for casual users, in the past this meant graph data analytics was the province of specialists. Fortunately graph data is an area that has attracted many enthusiastic entrepreneurs and developers. The tools have improved and I expect things to get much easier for users in the future. A great place to learn more about tools for graph data, is at the upcoming GraphLab Workshop (on July 1st in SF).
(…)
Ben summarizes graph resources for:
- Data wrangling: creating graphs
- Data management and search
- Graph-parallel frameworks
- Machine-learning and analytics
- Visualization
It would be hard to find a better starting place for investigating the buzz about graphs.
I first saw this in An Overview of Graph Processing Frameworks by Danny Bickson.