Categories, What’s the Point? by Jeremy Kun.
From the post:
Perhaps primarily due to the prominence of monads in the Haskell programming language, programmers are often curious about category theory. Proponents of Haskell and other functional languages can put category-theoretic concepts on a pedestal or in a mexican restaurant, and their benefits can seem as mysterious as they are magical. For instance, the most common use of a monad in Haskell is to simulate the mutation of immutable data. Others include suspending and backtracking computations, and even untying tangled rope.
Category theory is often mocked (or praised) as the be-all and end-all of mathematical abstraction, and as such (and for other reasons I’ve explored on this blog) many have found it difficult to digest and impossible to master. However, in truth category theory arose from a need for organizing mathematical ideas based on their shared structure. In this post, I want to give a brief overview of what purpose category theory serves within mathematics, and emphasize what direction we’ll be going with it on this blog.
We should also note (writing this after the fact), that this article is meant to be a motivation to our future series on category theory. It is very difficult to explain what category theory is without going into very specific details, but we can explain by analogy what category theory achieves for us. That is the goal of this post.
I rather like the line:
However, in truth category theory arose from a need for organizing mathematical ideas based on their shared structure.
Which is one of the reasons why I keep trying to master category theory, for the ability to organize subject identifications based on their shared structures.
Not necessary for all subject identity cases but if topic maps extend into subjects like math, physics, etc., then it may be quite useful.