Massive online data stream mining with R
From the post:
A few weeks ago, the stream package has been released on CRAN. It allows to do real time analytics on data streams. This can be very usefull if you are working with large datasets which are already hard to put in RAM completely, let alone to build some statistical model on it without getting into RAM problems.
…
The stream package is currently focussed on clustering algorithms available in MOA (http://moa.cms.waikato.ac.nz/details/stream-clustering/) and also eases interfacing with some clustering already available in R which are suited for data stream clustering. Classification algorithms based on MOA are on the todo list. Current available clustering algorithms are BIRCH, CluStream, ClusTree, DBSCAN, DenStream, Hierarchical, Kmeans and Threshold Nearest Neighbor.
What if data were always encountered as a stream?
Could request a “re-streaming” of data but best to do analysis in one streaming.
How would that impact your notion of subject identity?
How would you compensate for information learned later in the stream?