Another Word For It Patrick Durusau on Topic Maps and Semantic Diversity

July 26, 2012

Mining the pharmacogenomics literature—a survey of the state of the art

Filed under: Bioinformatics,Genome,Pharmaceutical Research,Text Mining — Patrick Durusau @ 1:23 pm

Mining the pharmacogenomics literature—a survey of the state of the art by Udo Hahn, K. Bretonnel Cohen, and Yael Garten. (Brief Bioinform (2012) 13 (4): 460-494. doi: 10.1093/bib/bbs018)

Abstract:

This article surveys efforts on text mining of the pharmacogenomics literature, mainly from the period 2008 to 2011. Pharmacogenomics (or pharmacogenetics) is the field that studies how human genetic variation impacts drug response. Therefore, publications span the intersection of research in genotypes, phenotypes and pharmacology, a topic that has increasingly become a focus of active research in recent years. This survey covers efforts dealing with the automatic recognition of relevant named entities (e.g. genes, gene variants and proteins, diseases and other pathological phenomena, drugs and other chemicals relevant for medical treatment), as well as various forms of relations between them. A wide range of text genres is considered, such as scientific publications (abstracts, as well as full texts), patent texts and clinical narratives. We also discuss infrastructure and resources needed for advanced text analytics, e.g. document corpora annotated with corresponding semantic metadata (gold standards and training data), biomedical terminologies and ontologies providing domain-specific background knowledge at different levels of formality and specificity, software architectures for building complex and scalable text analytics pipelines and Web services grounded to them, as well as comprehensive ways to disseminate and interact with the typically huge amounts of semiformal knowledge structures extracted by text mining tools. Finally, we consider some of the novel applications that have already been developed in the field of pharmacogenomic text mining and point out perspectives for future research.

At thirty-six (36) pages and well over 200 references, this is going to take a while to digest.

Some questions to be thinking about while reading:

How are entity recognition issues same/different?

What techniques have you seen before? How different/same?

What other techniques would you suggest?

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.

Powered by WordPress