My Favorite Graphs by Nina Zumel
From the post:
The important criterion for a graph is not simply how fast we can see a result; rather it is whether through the use of the graph we can see something that would have been harder to see otherwise or that could not have been seen at all. – William Cleveland, The Elements of Graphing Data, Chapter 2
In this article, I will discuss some graphs that I find extremely useful in my day-to-day work as a data scientist. While all of them are helpful (to me) for statistical visualization during the analysis process, not all of them will necessarily be useful for presentation of final results, especially to non-technical audiences.
I tend to follow Cleveland’s philosophy, quoted above; these graphs show me — and hopefully you — aspects of data and models that I might not otherwise see. Some of them, however, are non-standard, and tend to require explanation. My purpose here is to share with our readers some ideas for graphical analysis that are either useful to you directly, or will give you some ideas of your own.
I rather like that: “…can [we] see something that would have been harder to see otherwise or that could not have been seen at all.”
A good criteria for all data mining techniques or approaches.
You will like the graphs as well.