Another Word For It Patrick Durusau on Topic Maps and Semantic Diversity

January 30, 2013

Collaborative Filtering via Group-Structured Dictionary Learning

Filed under: Feature Spaces,Filters — Patrick Durusau @ 8:44 pm

Collaborative Filtering via Group-Structured Dictionary Learning by Zoltan Szabo, Barnabas Poczos , and Andras Lorincz.

Abstract:

Structured sparse coding and the related structured dictionary learning problems are novel research areas in machine learning. In this paper we present a new application of structured dictionary learning for collaborative filtering based recommender systems. Our extensive numerical experiments demonstrate that the presented method outperforms its state-of-the-art competitors and has several advantages over approaches that do not put structured constraints on the dictionary elements.

From the paper:

Novel advances on CF show that dictionary learning based approaches can be efficient for making predictions about users’ preferences [2]. The dictionary learning based approach assumes that (i) there is a latent, unstructured feature space (hidden representation/code) behind the users’ ratings, and (ii) a rating of an item is equal to the product of the item and the user’s feature.

Is a “preference” actually a form of subject identification?

I ask because the notion of a “real time” system is incompatible with users researching the proper canonical subject identifier and/or waiting for a response from an inter-departmental committee to agree on correct terminology.

Perhaps subject identification in some systems must be on the basis of “…latent, unstructured feature space[s]…” that are known (and disclosed) imperfectly at best.

Zoltán Szabó’s Home Page, numerous publications and the source code for this article.

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.

Powered by WordPress