The ubiquity of small-world networks by Qawi K. Telesford, Karen E. Joyce, Satoru Hayasaka, Jonathan H. Burdette, and Paul J. Laurienti.
Abstract:
Small-world networks by Watts and Strogatz are a class of networks that are highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. These characteristics result in networks with unique properties of regional specialization with efficient information transfer. Social networks are intuitive examples of this organization with cliques or clusters of friends being interconnected, but each person is really only 5-6 people away from anyone else. While this qualitative definition has prevailed in network science theory, in application, the standard quantitative application is to compare path length (a surrogate measure of distributed processing) and clustering (a surrogate measure of regional specialization) to an equivalent random network. It is demonstrated here that comparing network clustering to that of a random network can result in aberrant findings and networks once thought to exhibit small-world properties may not. We propose a new small-world metric, {\omega} (omega), which compares network clustering to an equivalent lattice network and path length to a random network, as Watts and Strogatz originally described. Example networks are presented that would be interpreted as small-world when clustering is compared to a random network but are not small-world according to {\omega}. These findings have significant implications in network science as small-world networks have unique topological properties, and it is critical to accurately distinguish them from networks without simultaneous high clustering and low path length.
What sort of network is your topic map?
Wonder if there will emerge classes of topic maps? Some of which are small-world networks and others that are not? I ask because knowing the conditions/requirements that lead to one type or the other would be another tool for designing topic maps for particular purposes.