Princeton researchers solve problem filling space — without cubes
From the post:
Whether packing oranges into a crate, fitting molecules into a human cell or getting data onto a compact disc, wasted space is usually not a good thing.
Now, in findings published June 20 in the Proceedings of the National Academy Sciences, Princeton University chemist Salvatore Torquato and colleagues have solved a conundrum that has baffled mathematical minds since ancient times — how to fill three-dimensional space with multi-sided objects other than cubes without having any gaps.
The discovery could lead to scientists finding new materials and could lead to advances in communications systems and computer security.
“You know you can fill space with cubes,” Torquato said, “We were looking for another way.” In the article “New Family of Tilings of Three-Dimensional Euclidean Space by Tetrahedra and Octahedra,” he and his team show they have solved the problem.
Not immediately useful for topic maps but will be interesting to see if new data structures emerge from this work.
See the article: New Family of Tilings of Three-Dimensional Euclidean Space by Tetrahedra and Octahedra (pay-per-view site)