Governments Are Secure, But Only By Your Forbearance (happens-before (HB) graphs)

MeltdownPrime and SpectrePrime: Automatically-Synthesized Attacks Exploiting Invalidation-Based Coherence Protocols by Caroline Trippel, Daniel Lustig, Margaret Martonosi.


The recent Meltdown and Spectre attacks highlight the importance of automated verification techniques for identifying hardware security vulnerabilities. We have developed a tool for synthesizing microarchitecture-specific programs capable of producing any user-specified hardware execution pattern of interest. Our tool takes two inputs: a formal description of (i) a microarchitecture in a domain-specific language, and (ii) a microarchitectural execution pattern of interest, e.g. a threat pattern. All programs synthesized by our tool are capable of producing the specified execution pattern on the supplied microarchitecture.

We used our tool to specify a hardware execution pattern common to Flush+Reload attacks and automatically synthesized security litmus tests representative of those that have been publicly disclosed for conducting Meltdown and Spectre attacks. We also formulated a Prime+Probe threat pattern, enabling our tool to synthesize a new variant of each—MeltdownPrime and SpectrePrime. Both of these new exploits use Prime+Probe approaches to conduct the timing attack. They are both also novel in that they are 2-core attacks which leverage the cache line invalidation mechanism in modern cache coherence protocols. These are the first proposed Prime+Probe variants of Meltdown and Spectre. But more importantly, both Prime attacks exploit invalidation-based coherence protocols to achieve the same level of precision as a Flush+Reload attack. While mitigation techniques in software (e.g., barriers that prevent speculation) will likely be the same for our Prime variants as for original Spectre and Meltdown, we believe that hardware protection against them will be distinct. As a proof of concept, we implemented SpectrePrime as a C program and ran it on an Intel x86 processor, averaging about the same accuracy as Spectre over 100 runs—97.9% for Spectre and 99.95% for SpectrePrime.

A separate paper is under review for the “tool” used in this article so more joy is on your way!

As a bonus, “happens-before (HB) graphs” are used, enabling exercise of those graph skills you built making cluttered Twitter graphs.

Good hunting!

Leave a Reply

You must be logged in to post a comment.