Workflow for R & Shakespeare

A new data processing workflow for R: dplyr, magrittr, tidyr, ggplot2

From the post:

Over the last year I have changed my data processing and manipulation workflow in R dramatically. Thanks to some great new packages like dplyr, tidyr and magrittr (as well as the less-new ggplot2) I've been able to streamline code and speed up processing. Up until 2014, I had used essentially the same R workflow (aggregate, merge, apply/tapply, reshape etc) for more than 10 years. I have added a few improvements over the years in the form of functions in packages doBy, reshape2 and plyr and I also flirted with the package data.table (which I found to be much faster for big datasets but the syntax made it difficult to work with) — but the basic flow has remained remarkably similar. Until now…

Given how much I've enjoyed the speed and clarity of the new workflow, I thought I would share a quick demonstration.

In this example, I am going to grab data from a sample SQL database provided by Google via Google BigQuery and then give examples of manipulation using dplyr, magrittr and tidyr (and ggplot2 for visualization).

This is a great introduction to a work flow in R that you can generalize for your own purposes.

Word counts won’t impress your English professor but you will have a base for deeper analysis of Shakespeare.

I first saw this in a tweet by Christophe Lalanne.

Comments are closed.