Another Word For It Patrick Durusau on Topic Maps and Semantic Diversity

April 27, 2013

Extracting and connecting chemical structures…

Filed under: Cheminformatics,Data Mining,Text Mining — Patrick Durusau @ 6:00 pm

Extracting and connecting chemical structures from text sources using chemicalize.org by Christopher Southan and Andras Stracz.

Abstract:

Background

Exploring bioactive chemistry requires navigating between structures and data from a variety of text-based sources. While PubChem currently includes approximately 16 million document-extracted structures (15 million from patents) the extent of public inter-document and document-to-database links is still well below any estimated total, especially for journal articles. A major expansion in access to text-entombed chemistry is enabled by chemicalize.org. This on-line resource can process IUPAC names, SMILES, InChI strings, CAS numbers and drug names from pasted text, PDFs or URLs to generate structures, calculate properties and launch searches. Here, we explore its utility for answering questions related to chemical structures in documents and where these overlap with database records. These aspects are illustrated using a common theme of Dipeptidyl Peptidase 4 (DPPIV) inhibitors.

Results

Full-text open URL sources facilitated the download of over 1400 structures from a DPPIV patent and the alignment of specific examples with IC50 data. Uploading the SMILES to PubChem revealed extensive linking to patents and papers, including prior submissions from chemicalize.org as submitting source. A DPPIV medicinal chemistry paper was completely extracted and structures were aligned to the activity results table, as well as linked to other documents via PubChem. In both cases, key structures with data were partitioned from common chemistry by dividing them into individual new PDFs for conversion. Over 500 structures were also extracted from a batch of PubMed abstracts related to DPPIV inhibition. The drug structures could be stepped through each text occurrence and included some converted MeSH-only IUPAC names not linked in PubChem. Performing set intersections proved effective for detecting compounds-in-common between documents and/or merged extractions.

Conclusion

This work demonstrates the utility of chemicalize.org for the exploration of chemical structure connectivity between documents and databases, including structure searches in PubChem, InChIKey searches in Google and the chemicalize.org archive. It has the flexibility to extract text from any internal, external or Web source. It synergizes with other open tools and the application is undergoing continued development. It should thus facilitate progress in medicinal chemistry, chemical biology and other bioactive chemistry domains.

A great example of building a resource to address identity issues in a specific domain.

The result speaks for itself.

PS: The results were not delayed awaiting a reformation of chemistry to use a common identifier.

No Comments

No comments yet.

RSS feed for comments on this post.

Sorry, the comment form is closed at this time.

Powered by WordPress